Back to Search Start Over

Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli.

Authors :
Fox, Edward A.
Serlin, Hannah K.
Source :
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology; Aug2024, Vol. 327 Issue 2, pR173-R187, 15p
Publication Year :
2024

Abstract

Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03636119
Volume :
327
Issue :
2
Database :
Complementary Index
Journal :
American Journal of Physiology: Regulatory, Integrative & Comparative Physiology
Publication Type :
Academic Journal
Accession number :
178858434
Full Text :
https://doi.org/10.1152/ajpregu.00252.2023