Back to Search Start Over

DEM super-resolution framework based on deep learning: decomposing terrain trends and residuals.

Authors :
Hongen Wang
Liyang Xiong
Guanghui Hu
Haoyu Cao
Sijin Li
Guoan Tang
Lei Zhou
Source :
International Journal of Digital Earth; Jan2024, Vol. 17 Issue 1, p1-21, 21p
Publication Year :
2024

Abstract

Deep learning-based super-resolution is an essential technique for acquiring high-resolution digital elevation models (DEMs) by enhancing the spatial resolution of low-resolution DEMs. However, current deep learning-based approaches for DEM super-resolution lack comprehensiveness in terrain information reconstruction, resulting in the need to strengthen the rationality of terrain representation. Furthermore, the limited adaptability and extension potential of these approaches restrict their practical applicability and scope, hindering further advancement. As a solution, we introduce a broadly scalable detrending-based deep learning (DTDL) spatially explicit framework for DEM super-resolution. The framework aims to improve DEM reconstruction through data processing and augmentation. It employs detrending to distinguish between large-scale terrain trends and small-scale residuals in DEMs, thereby enhancing the neural network's capacity to learn terrain information. We integrate DTDL with classical super-resolution methods (SRCNN, EDSR, and SRGAN) and conduct experiments in the Alps, Himalayas, and Rockies. The experimental results indicate that the fusion of DTDL with deep learning-based methods enhances the accuracy of terrain reconstruction and the rationality of terrain feature representation, demonstrating strong compatibility and robustness. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17538947
Volume :
17
Issue :
1
Database :
Complementary Index
Journal :
International Journal of Digital Earth
Publication Type :
Academic Journal
Accession number :
178809032
Full Text :
https://doi.org/10.1080/17538947.2024.2356121