Back to Search
Start Over
Flexible and transparent nanohole-patterned films with antibacterial properties against Staphylococcus aureus.
- Source :
- Journal of Materials Chemistry B; 8/14/2024, Vol. 12 Issue 30, p7298-7310, 13p
- Publication Year :
- 2024
-
Abstract
- In this paper, we explore the development of a multi-functional surface designed to tackle the challenges posed by Staphylococcus aureus (S. aureus), a common opportunistic pathogen. Infections caused by S. aureus during surgical procedures highlight the need for effective strategies to inhibit its adhesion, growth, and colonization, particularly on the surfaces of invasive medical devices. Until now, most existing research has focused on nanopillar structures (positive topographies). Uniform nanopillar arrays have been shown to control bacterial behavior based on the spacing between nanopillars. However, nanopillar structures are susceptible to external friction, impact, and force, making it challenging to maintain their antibacterial properties. Therefore, in this study, we investigate the antibacterial behavior of nanohole structures, which offer relatively superior mechanical robustness compared to nanopillars. Moreover, for applications in medical devices such as laparoscopes, there is a pressing need for surfaces that are not only transparent and flexible (or curved) but are also equipped with antibacterial properties. Our study introduces a scalable multi-functional surface that synergistically combines antibacterial and anti-fog properties. This is achieved by fabricating thin films with variously sized holes (ranging from 0.3 µm to 4 µm) using polyurethane acrylate (PUA). We assessed the activity of S. aureus on these surfaces and found that a 1 µm-diameter-hole pattern significantly reduced the presence of live S. aureus, without any detection of dead S. aureus. This bacteriostatic effect is attributed to the restricted proliferation due to the confined area provided by the hole pattern. However, the persistence of some live S. aureus on the surface necessitates further measures to minimize bacterial adhesion and enhance antibacterial effectiveness. To address this challenge, we coated the zwitterionic polymer 2-methacryloyloxyethyl phosphorylcholine (MPC) onto the nanohole pattern surface to reduce S. aureus adhesion. Moreover, in long-term experiments on surfaces, the MPC-coated effectively inhibited the colonization of S. aureus (18 h; 82%, 7 days; 83%, and 14 days; 68% antibacterial rate). By integrating PUA, MPC, and nanohole architectures into a single, flexible platform, we achieved a multi-functional surface catering to transparency, anti-fogging, and anti-biofouling requirements. This innovative approach marks a significant advancement in surface engineering, offering a versatile solution applicable in various fields, particularly in preventing S. aureus contamination in invasive medical devices like laparoscopes. The resultant surface, characterized by its transparency, flexibility, and antibacterial functionality, stands out as a promising candidate for mitigating S. aureus-related risks in medical applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2050750X
- Volume :
- 12
- Issue :
- 30
- Database :
- Complementary Index
- Journal :
- Journal of Materials Chemistry B
- Publication Type :
- Academic Journal
- Accession number :
- 178785662
- Full Text :
- https://doi.org/10.1039/d4tb00434e