Back to Search Start Over

Global sharp gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.

Authors :
Chuan, Le Huy
Dung, Nguyen Thac
Manh, Nguyen Tien
Source :
Analysis (0174-4747); Aug2024, Vol. 44 Issue 3, p179-190, 12p
Publication Year :
2024

Abstract

In this paper, we employ the techniques in [C. Cavaterra, S. Dipierro, Z. Gao and E. Valdinoci, Global gradient estimates for a general type of nonlinear parabolic equations, J. Geom. Anal. 32 2022, 2, Paper No. 65] and the approach in [H. T. Dung and N. T. Dung, Sharp gradient estimates for a heat equation in Riemannian manifolds, Proc. Amer. Math. Soc. 147 2019, 12, 5329–5338] to derive sharp gradient estimates for a positive solution to the heat equation u t = Δ ⁢ u + a ⁢ u ⁢ log ⁡ u in a complete noncompact Riemannian manifold (where a is a real constant). This is an extension of the gradient estimates of Dung and Dung. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01744747
Volume :
44
Issue :
3
Database :
Complementary Index
Journal :
Analysis (0174-4747)
Publication Type :
Academic Journal
Accession number :
178784741
Full Text :
https://doi.org/10.1515/anly-2023-0022