Back to Search
Start Over
Global sharp gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.
- Source :
- Analysis (0174-4747); Aug2024, Vol. 44 Issue 3, p179-190, 12p
- Publication Year :
- 2024
-
Abstract
- In this paper, we employ the techniques in [C. Cavaterra, S. Dipierro, Z. Gao and E. Valdinoci, Global gradient estimates for a general type of nonlinear parabolic equations, J. Geom. Anal. 32 2022, 2, Paper No. 65] and the approach in [H. T. Dung and N. T. Dung, Sharp gradient estimates for a heat equation in Riemannian manifolds, Proc. Amer. Math. Soc. 147 2019, 12, 5329–5338] to derive sharp gradient estimates for a positive solution to the heat equation u t = Δ u + a u log u in a complete noncompact Riemannian manifold (where a is a real constant). This is an extension of the gradient estimates of Dung and Dung. [ABSTRACT FROM AUTHOR]
- Subjects :
- RIEMANNIAN manifolds
HEAT equation
NONLINEAR equations
MANURES
MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 01744747
- Volume :
- 44
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Analysis (0174-4747)
- Publication Type :
- Academic Journal
- Accession number :
- 178784741
- Full Text :
- https://doi.org/10.1515/anly-2023-0022