Back to Search Start Over

Development of resin‐based dental composites containing hydroxyapatite and zirconia nanoparticles.

Authors :
Tunca Taşkıran, Senagül
Tanoğlu, Metin
Çerci, Nazife
Cevahir, Aref
Türkdoğan Damar, Ceren
Ünver, Elçin
Aktaş, Mustafa İlker
Source :
Polymer Composites; 8/10/2024, Vol. 45 Issue 11, p10470-10485, 16p
Publication Year :
2024

Abstract

In clinical applications, resin‐based dental composites primarily face challenges with fractures and secondary caries. To overcome these issues, the physical characteristics of dental composites, especially mechanical properties, need to be improved. Hydroxyapatite (HA), present in the structure of the teeth, is preferred due to its biological properties, and zirconia (ZrO2) nanoparticles are known to enhance the mechanical properties of this type of composites. The aim of this study is to develop resin‐based dental composites containing HA and ZrO2 nanoparticles. The study also aims to explore the synergistic effect of these two nanoparticles on the physical properties of the developed composites. Composites with nine different compositions were prepared by mixing the components with the help of a mortar mill. The flexural and compressive strength, polymerization shrinkage, depth of cure and water sorption, and solubility properties of the prepared composites have been investigated. All composites have been found to meet the requirements of ISO 4049 standard. Among them, composite containing 5 wt. % HA and 1 wt. % ZrO2 (H5Z1) has exhibited the highest flexural strength with an increase of 58% compared to the control sample, and composite containing 3 wt. % HA and 2 wt. % ZrO2 (H3Z2) has exhibited the highest compressive strength with an increase of 22% compared to the control sample. Other physical properties of the composites have been found to be in an acceptable level. Highlights: Dental composites with HA and ZrO2 fillers were developed by a mortar mill.Synergistic effect of HA and ZrO2 nanoparticles was investigated.Mechanical properties of dental composites were significantly improved.Physical properties of dental composites were found to be at acceptable levels.Depth of cure decreases with increasing HA and ZrO2 loading. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728397
Volume :
45
Issue :
11
Database :
Complementary Index
Journal :
Polymer Composites
Publication Type :
Academic Journal
Accession number :
178782954
Full Text :
https://doi.org/10.1002/pc.28488