Back to Search Start Over

IRADA: integrated reinforcement learning and deep learning algorithm for attack detection in wireless sensor networks.

Authors :
Shakya, Vandana
Choudhary, Jaytrilok
Singh, Dhirendra Pratap
Source :
Multimedia Tools & Applications; Aug2024, Vol. 83 Issue 28, p71559-71578, 20p
Publication Year :
2024

Abstract

Wireless Sensor Networks (WSNs) play a vital role in various applications, necessitating robust network security to protect sensitive data. Intrusion Detection Systems (IDSs) are crucial for preserving the integrity, availability, and confidentiality of WSNs by detecting and countering potential attacks. Despite significant research efforts, the existing IDS solutions still suffer from challenges related to detection accuracy and false alarms. To address these challenges, in this paper, we propose a Bayesian optimization-based Deep Learning (DL) model. However, the proposed optimized DL model, while showing promising results in enhancing security, encounters challenges such as data dependency, computational complexity, and the potential for overfitting. In the literature, researchers have employed Reinforcement Learning (RL) to address these issues. However, it also introduces its own concerns, including exploration, reward design, and prolonged training times. Consequently, to address these challenges, this paper proposes an Innovative Integrated RL-based Advanced DL Algorithm (IRADA) for attack detection in WSNs. IRADA leverages the convergence of DL and RL models to achieve superior intrusion detection performance. The performance analysis of IRADA reveals impressive results, including accuracy (99.50%), specificity (99.94%), sensitivity (99.48%), F1-Score (98.26%), Kappa statistics (99.42%), and area under the curve (99.38%). Additionally, we analyze IRADA's robustness against adversarial attacks, ensuring its applicability in real-world security scenarios. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13807501
Volume :
83
Issue :
28
Database :
Complementary Index
Journal :
Multimedia Tools & Applications
Publication Type :
Academic Journal
Accession number :
178777899
Full Text :
https://doi.org/10.1007/s11042-024-18289-7