Back to Search Start Over

Dementia with Lewy bodies and gait neural basis: a cross-sectional study.

Authors :
Sainsily-Cesarus, Adele
Schmitt, Elise
Landre, Lionel
Botzung, Anne
Rauch, Lucie
Demuynck, Catherine
Philippi, Nathalie
de Sousa, Paulo Loureiro
Mutter, Catherine
Cretin, Benjamin
Martin-Hunyadi, Catherine
Blanc, Frederic
Source :
Alzheimer's Research & Therapy; 7/30/2024, Vol. 16 Issue 1, p1-10, 10p
Publication Year :
2024

Abstract

Background: Dementia with Lewy Bodies (DLB) is responsible for cognitive-behavioural disorders but also for gait disorders. The latter are thought to be related to parkinsonism, but the neural bases of these disorders are not well known, especially in the early stages. The aim of this study was to investigate by volumetric Magnetic Resonance Imaging the neuronal basis of gait disorders in DLB patients, compared to Healthy Elderly Controls and Alzheimer's Disease patients. Methods: Clinical examination with motor assessment including 10-meter walking speed, one-leg balance and Timed Up and Go test, a comprehensive neuropsychological evaluation and 3D brain Magnetic Resonance Imaging were performed on 84 DLB patients, 39 Alzheimer's Disease patients and 22 Healthy Elderly Controls. We used Statistical Parametric Mapping 12 to perform a one-sample t-test to investigate the correlation between each gait score and gray matter volume (P ≤ 0.05 corrected for family-wise error). Results: We found a correlation for DLB patients between walking speed and gray matter decrease (P < 0.05, corrected for family-wise error) in caudate nuclei, anterior cingulate cortex, mid-cingulate cortex, hippocampi, supplementary motor area, right cerebellar cortex and left parietal operculum. We found no correlation with Timed Up and Go test and one-leg balance. Conclusion: Gait disorders are underpinned by certain classical regions such as the cerebellum and the supplementary motor area. Our results suggest there may be a motivational and emotional component of voluntary gait in DLB subjects, underpinned by the cingulate cortex, a spatial orientation component, underpinned by hippocampi and suggest the involvement of brain processing speed and parkinsonism, underpinned by the caudate nuclei. Trial registration: The study protocol has been registered on ClinicalTrials.gov. (NCT01876459) on June 12, 2013. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17589193
Volume :
16
Issue :
1
Database :
Complementary Index
Journal :
Alzheimer's Research & Therapy
Publication Type :
Academic Journal
Accession number :
178775856
Full Text :
https://doi.org/10.1186/s13195-024-01539-z