Back to Search
Start Over
Machine vision-based gait scan method for identifying cognitive impairment in older adults.
- Source :
- Frontiers in Aging Neuroscience; 2024, p1-12, 12p
- Publication Year :
- 2024
-
Abstract
- Objective: Early identification of cognitive impairment in older adults could reduce the burden of age-related disabilities. Gait parameters are associated with and predictive of cognitive decline. Although a variety of sensors and machine learning analysis methods have been used in cognitive studies, a deep optimized machine vision-based method for analyzing gait to identify cognitive decline is needed. Methods: This study used a walking footage dataset of 158 adults named West China Hospital Elderly Gait, which was labelled by performance on the Short Portable Mental Status Questionnaire. We proposed a novel recognition network, Deep Optimized GaitPart (DO-GaitPart), based on silhouette and skeleton gait images. Three improvements were applied: short-term temporal template generator (STTG) in the template generation stage to decrease computational cost and minimize loss of temporal information; depth-wise spatial feature extractor (DSFE) to extract both global and local fine-grained spatial features from gait images; and multi-scale temporal aggregation (MTA), a temporal modeling method based on attention mechanism, to improve the distinguishability of gait patterns. Results: An ablation test showed that each component of DO-GaitPart was essential. DO-GaitPart excels in backpack walking scene on CASIA-B dataset, outperforming comparison methods, which were GaitSet, GaitPart, MT3D, 3D Local, TransGait, CSTL, GLN, GaitGL and SMPLGait on Gait3D dataset. The proposed machine vision gait feature identification method achieved a receiver operating characteristic/area under the curve (ROCAUC) of 0.876 (0.852-0.900) on the cognitive state classification task. Conclusion: The proposed method performed well identifying cognitive decline from the gait video datasets, making it a prospective prototype tool in cognitive assessment. [ABSTRACT FROM AUTHOR]
- Subjects :
- COGNITION disorders diagnosis
CROSS-sectional method
MENTAL health surveys
RESEARCH funding
INDEPENDENT living
RECEIVER operating characteristic curves
QUESTIONNAIRES
DIAGNOSIS
GAIT in humans
DESCRIPTIVE statistics
WALKING
GERIATRIC assessment
DIGITAL image processing
MACHINE learning
DATA analysis software
VIDEO recording
ALGORITHMS
GRIP strength
OLD age
Subjects
Details
- Language :
- English
- ISSN :
- 16634365
- Database :
- Complementary Index
- Journal :
- Frontiers in Aging Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 178726516
- Full Text :
- https://doi.org/10.3389/fnagi.2024.1341227