Back to Search Start Over

Atmospheric oxygenation at the onset of Earth's Great Oxidation forced enhanced marine anoxia.

Authors :
Havsteen, J. C.
Eickmann, B.
Izon, G.
Kleinhanns, I. C.
Rosca, C.
Beukes, N. J.
Schoenberg, R.
Source :
South African Journal of Geology; Jun2024, Vol. 127 Issue 2, p455-472, 18p
Publication Year :
2024

Abstract

Capturing the loss of mass-independent sulphur isotope fractionation (MIF-S), the correlative South African Duitschland and Rooihoogte formations are widely held to bear the isotopic fingerprint of the first atmospheric oxygenation at the onset of the so-called Great Oxidation Event (GOE). Surprisingly, however, while the multiple sulphur isotope systematics of these formations remain central to our understanding of the GOE, until now, comparatively little work has been done to elucidate the repercussions within the marine realm. Here we present chemostratigraphic records from four drill cores covering a large area of the Transvaal Basin, transcending these crucial units and continuing into the overlying Timeball Hill Formation (TBH), that document the immediate, yet counterintuitive, marine response to atmospheric oxygenation. Specifically, irrespective of the interpretative framework employed, our basin-wide redoxsensitive trace element data document an environmental change from oxic/suboxic conditions within the lower and middle parts of the Duitschland and Rooihoogte formations to suboxic/anoxic conditions within their upper reaches. Interestingly, in concert with a ~35‰ negative δ34S excursion that implicates increased sulphate availability and bacterial sulphate reduction, δ<superscript>98/95</superscript>Mo<subscript>3134+0.25</subscript> values increase by ~1.0 to 1.5‰. Combining these observations with increased Fe/Mn ratios, elevated total sulphur and carbon contents and a trend towards lower δ<superscript>13</superscript>C<subscript>org</subscript> values imply a shift toward less oxygenated conditions across the Transvaal Basin. The combined observations in the mentioned parameters expose a geobiological feedback-driven causality between the earliest oxygenation of the atmosphere and decreased redox potentials of medium to deep marine environments, at least within the Transvaal Basin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10120750
Volume :
127
Issue :
2
Database :
Complementary Index
Journal :
South African Journal of Geology
Publication Type :
Academic Journal
Accession number :
178710721
Full Text :
https://doi.org/10.25131/sajg.127.0002