Back to Search
Start Over
The synaptic correlates of serial position effects in sequential working memory.
- Source :
- Frontiers in Computational Neuroscience; 2024, p1-13, 13p
- Publication Year :
- 2024
-
Abstract
- Sequential working memory (SWM), referring to the temporary storage and manipulation of information in order, plays a fundamental role in brain cognitive functions. The serial position effect refers to the phenomena that recall accuracy of an item is associated to the order of the item being presented. The neural mechanismunderpinning the serial position effect remains unclear. The synaptic mechanism of working memory proposes that information is stored as hidden states in the form of facilitated neuronal synapse connections. Here, we build a continuous attractor neural network with synaptic short-term plasticity (STP) to explore the neural mechanism of the serial position effect. Using a delay recall task, ourmodel reproduces the the experimental finding that as themaintenance period extends, the serial position effect transitions from the primacy to the recency effect. Using both numerical simulation and theoretical analysis, we show that the transition moment is determined by the parameters of STP and the interval between presented stimulus items. Our results highlight the pivotal role of STP in processing the order information in SWM. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16625188
- Database :
- Complementary Index
- Journal :
- Frontiers in Computational Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 178706232
- Full Text :
- https://doi.org/10.3389/fncom.2024.1430244