Back to Search Start Over

Learning from Feature and Global Topologies: Adaptive Multi-View Parallel Graph Contrastive Learning.

Authors :
Song, Yumeng
Li, Xiaohua
Li, Fangfang
Yu, Ge
Source :
Mathematics (2227-7390); Jul2024, Vol. 12 Issue 14, p2277, 26p
Publication Year :
2024

Abstract

To address the limitations of existing graph contrastive learning methods, which fail to adaptively integrate feature and topological information and struggle to efficiently capture multi-hop information, we propose an adaptive multi-view parallel graph contrastive learning framework (AMPGCL). It is an unsupervised graph representation learning method designed to generate task-agnostic node embeddings. AMPGCL constructs and encodes feature and topological views to mine feature and global topological information. To encode global topological information, we introduce an H-Transformer to decouple multi-hop neighbor aggregations, capturing global topology from node subgraphs. AMPGCL learns embedding consistency among feature, topology, and original graph encodings through a multi-view contrastive loss, generating semantically rich embeddings while avoiding information redundancy. Experiments on nine real datasets demonstrate that AMPGCL consistently outperforms thirteen state-of-the-art graph representation learning models in classification accuracy, whether in homophilous or non-homophilous graphs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
12
Issue :
14
Database :
Complementary Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
178699913
Full Text :
https://doi.org/10.3390/math12142277