Back to Search Start Over

Concept-Based Explanations for Millimeter Wave Radar Target Recognition.

Authors :
Shang, Qijie
Zheng, Tieran
Zhang, Liwen
Zhang, Youcheng
Ma, Zhe
Source :
Remote Sensing; Jul2024, Vol. 16 Issue 14, p2640, 20p
Publication Year :
2024

Abstract

This paper presents exploratory work on the use of Testing with Concept Activation Vectors (TCAV) within a concept-based explanation framework to provide the explainability of millimeter-wave (MMW) radar target recognition. Given that the radar spectrum is difficult for non-domain experts to understand visually, defining concepts for radar remains a significant challenge. In response, drawing from the visual analytical experience of experts, some basic concepts based on brightness, striping, size, and shape are adopted in this paper. However, the simplicity of basic concept definitions sometimes leads to vague correlations with recognition targets and significant variability among individuals, limiting their adaptability to specific tasks. To address these issues, this study proposes a Basic Concept-Guided Deep Embedding Clustering (BCG-DEC) method that can effectively discover task-specific composite concepts. BCG-DEC methodically analyzes the deep semantic information of radar data through four distinct stages from the perspective of concept discovery, ensuring that the concepts discovered accurately conform to the task-specific property of MMW radar target recognition. The experimental results show that the proposed method not only expands the number of concepts but also effectively solves the problem of difficulty in annotating basic concepts. In the ROD2021 MMW radar explainability experiments, the concepts proved crucial for recognizing specific categories of radar targets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
14
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
178698167
Full Text :
https://doi.org/10.3390/rs16142640