Back to Search Start Over

Analysis of the Measurement of Transportation Carbon Emissions and the Emission Reduction Path in the Yangtze River Economic Belt under the Background of "Dual Carbon" Goals.

Authors :
Sun, Yanming
Zhang, Guangzhen
Source :
Energies (19961073); Jul2024, Vol. 17 Issue 14, p3364, 20p
Publication Year :
2024

Abstract

Carbon emissions from the Yangtze River Economic Belt are an important element of China's carbon emission endeavor, and a study of its emission reduction pathway can provide a reference for the country's overall management of carbon emission reduction. From the perspective of energy consumption, this paper uses the carbon emission factor method to estimate the carbon emissions of the transportation industry in the Yangtze River Economic Belt during 2006–2020, based on the extended STIRPAT model, considering the influence of seven factors, i.e., population size, urbanization rate, GDP per capita, transportation added value, energy structure, energy intensity, and transportation intensity, on carbon emissions. Based on these factors, a scenario analysis, combined with a forecasting model, is used to predict the peak carbon performance of the transportation industry under different development scenarios. The results show that the overall carbon emissions of transportation in the YEB from 2006 to 2020 show a fluctuating upward trend, and the downstream carbon emissions are significantly higher than those in other regions. The main factors influencing carbon emissions from transportation in different upstream, midstream, and downstream regions vary, with both population and economic factors contributing to carbon emissions, while technical factors affect them differently. There are significant differences in the peak carbon performance of transportation under different development scenarios, and the government should take effective measures to work towards achieving the goals of the low-carbon or enhanced low-carbon scenarios. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
14
Database :
Complementary Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
178696328
Full Text :
https://doi.org/10.3390/en17143364