Back to Search
Start Over
The Melting Behavior of Hydrogen Direct Reduced Iron in Molten Steel and Slag: An Integrated Computational and Experimental Study.
- Source :
- Metals (2075-4701); Jul2024, Vol. 14 Issue 7, p821, 19p
- Publication Year :
- 2024
-
Abstract
- Direct reduced iron (DRI) and hot briquetted iron (HBI) are essential feedstocks for tramp element control in the electric arc furnace (EAF). Due to greenhouse gas (GHG) concerns related to CO<subscript>2</subscript> emissions, hydrogen as a substitute for natural gas and a reductant in DRI production is being widely explored to reduce GHG emissions in ironmaking. This study examines the melting behavior of hydrogen DRI (H-DRI) pellets in the EAF containing low-carbon (0.1 wt.%) molten steel and molten slag. A computational heat transfer model was developed to predict the melting behavior of H-DRI pellets. To validate the model, a set of experimental laboratory simulations was conducted by immersing H-DRI in a molten steel bath and slag. The temperature history at the center of the pellet during melting and the shell thickness at different melting stages were utilized to validate the model. The simulation results agree with the experimental measurements of steel balls and H-DRI in different metallic molten steel and slag baths. [ABSTRACT FROM AUTHOR]
- Subjects :
- SYNTHETIC natural gas
LIQUID iron
ELECTRIC arc
ARC furnaces
ELECTRIC furnaces
SLAG
Subjects
Details
- Language :
- English
- ISSN :
- 20754701
- Volume :
- 14
- Issue :
- 7
- Database :
- Complementary Index
- Journal :
- Metals (2075-4701)
- Publication Type :
- Academic Journal
- Accession number :
- 178691583
- Full Text :
- https://doi.org/10.3390/met14070821