Back to Search Start Over

Analysis of AC DC Four-Switch Boost-Buck Battery Charger Converter for EV Applications.

Authors :
Nassary, Mahmoud
Vidal-Idiarte, Enric
Calvente, Javier
Source :
Applied Sciences (2076-3417); Jul2024, Vol. 14 Issue 14, p6262, 22p
Publication Year :
2024

Abstract

This paper focuses on the analysis and control strategy of a four-switch boost-buck AC/DC converter utilized in power factor correction applications with a wide output voltage range. Given the increasing importance of electric vehicles and the need for high reliability, this study addresses the internal dynamic stability problem that can arise in the converter system. The analysis begins with a thorough examination of the system's min-phase characteristic. Despite this, internal dynamic stability issues persist, requiring a solution to ensure a higher power factor and reliability. To address this challenge, this paper proposes the utilization of a damping RC circuit instead of reducing the loop gain bandwidth. To demonstrate the internal dynamic behavior of the converter, small-signal modeling is employed. This modeling highlights the importance of mitigating internal dynamic instability to achieve the desired power factor and reliability. This study emphasizes the significance of proper analysis and control strategies for boost-buck AC/DC converters in power factor correction applications. By addressing internal dynamic stability using a damping RC circuit, the converter can achieve a higher power factor and enhanced reliability, ultimately contributing to the development of more efficient and dependable EV systems. Finally, the feasibility of the proposed analysis and control strategy is confirmed through comprehensive simulations. The simulation results validate the effectiveness of using a damping RC circuit to address the internal dynamic stability problem, leading to an improved power factor and enhanced reliability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
14
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
178690830
Full Text :
https://doi.org/10.3390/app14146262