Back to Search Start Over

Multi-parametric MRI-based machine learning model for prediction of pathological grade of renal injury in a rat kidney cold ischemia-reperfusion injury model.

Authors :
Chen, Lihua
Ren, Yan
Yuan, Yizhong
Xu, Jipan
Wen, Baole
Xie, Shuangshuang
Zhu, Jinxia
Li, Wenshuo
Gong, Xiaoli
Shen, Wen
Source :
BMC Medical Imaging; 7/26/2024, Vol. 24 Issue 1, p1-12, 12p
Publication Year :
2024

Abstract

Background: Renal cold ischemia-reperfusion injury (CIRI), a pathological process during kidney transplantation, may result in delayed graft function and negatively impact graft survival and function. There is a lack of an accurate and non-invasive tool for evaluating the degree of CIRI. Multi-parametric MRI has been widely used to detect and evaluate kidney injury. The machine learning algorithms introduced the opportunity to combine biomarkers from different MRI metrics into a single classifier. Objective: To evaluate the performance of multi-parametric magnetic resonance imaging for grading renal injury in a rat model of renal cold ischemia-reperfusion injury using a machine learning approach. Methods: Eighty male SD rats were selected to establish a renal cold ischemia -reperfusion model, and all performed multiparametric MRI scans (DWI, IVIM, DKI, BOLD, T1mapping and ASL), followed by pathological analysis. A total of 25 parameters of renal cortex and medulla were analyzed as features. The pathology scores were divided into 3 groups using K-means clustering method. Lasso regression was applied for the initial selecting of features. The optimal features and the best techniques for pathological grading were obtained. Multiple classifiers were used to construct models to evaluate the predictive value for pathology grading. Results: All rats were categorized into mild, moderate, and severe injury group according the pathologic scores. The 8 features that correlated better with the pathologic classification were medullary and cortical Dp, cortical T2*, cortical Fp, medullary T2*, ∆T1, cortical RBF, medullary T1. The accuracy(0.83, 0.850, 0.81, respectively) and AUC (0.95, 0.93, 0.90, respectively) for pathologic classification of the logistic regression, SVM, and RF are significantly higher than other classifiers. For the logistic model and combining logistic, RF and SVM model of different techniques for pathology grading, the stable and perform are both well. Based on logistic regression, IVIM has the highest AUC (0.93) for pathological grading, followed by BOLD(0.90). Conclusion: The multi-parametric MRI-based machine learning model could be valuable for noninvasive assessment of the degree of renal injury. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14712342
Volume :
24
Issue :
1
Database :
Complementary Index
Journal :
BMC Medical Imaging
Publication Type :
Academic Journal
Accession number :
178621517
Full Text :
https://doi.org/10.1186/s12880-024-01320-6