Back to Search Start Over

Slow vibrational relaxation drives ultrafast formation of photoexcited polaron pair states in glycolated conjugated polymers.

Authors :
Pagano, Katia
Kim, Jin Gwan
Luke, Joel
Tan, Ellasia
Stewart, Katherine
Sazanovich, Igor V.
Karras, Gabriel
Gonev, Hristo Ivov
Marsh, Adam V.
Kim, Na Yeong
Kwon, Sooncheol
Kim, Young Yong
Alonso, M. Isabel
Dörling, Bernhard
Campoy-Quiles, Mariano
Parker, Anthony W.
Clarke, Tracey M.
Kim, Yun-Hi
Kim, Ji-Seon
Source :
Nature Communications; 7/22/2024, Vol. 15 Issue 1, p1-13, 13p
Publication Year :
2024

Abstract

Glycol sidechains are often used to enhance the performance of organic photoconversion and electrochemical devices. Herein, we study their effects on electronic states and electronic properties. We find that polymer glycolation not only induces more disordered packing, but also results in a higher reorganisation energy due to more localised π-electron density. Transient absorption spectroscopy and femtosecond stimulated Raman spectroscopy are utilised to monitor the structural relaxation dynamics coupled to the excited state formation upon photoexcitation. Singlet excitons are initially formed, followed by polaron pair formation. The associated structural relaxation slows down in glycolated polymers (5 ps vs. 1.25 ps for alkylated), consistent with larger reorganisation energy. This slower vibrational relaxation is found to drive ultrafast formation of the polaron pair state (5 ps vs. 10 ps for alkylated). These results provide key experimental evidence demonstrating the impact of molecular structure on electronic state formation driven by strong vibrational coupling. Glycol sidechains are often used to enhance the performance of organic photoconversion and electrochemical devices. Here, the authors provide photophysical insight into the role of glycol sidechains for the formation of polaron pairs induced by strong vibrational coupling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
178588932
Full Text :
https://doi.org/10.1038/s41467-024-50530-7