Back to Search
Start Over
Facile access to bicyclo[2.1.1]hexanes by Lewis acid-catalyzed formal cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes.
- Source :
- Nature Communications; 7/20/2024, Vol. 15 Issue 1, p1-9, 9p
- Publication Year :
- 2024
-
Abstract
- Saturated three-dimensional carbocycles have gained increasing prominence in synthetic and medicinal chemistry. In particular, bicyclo[2.1.1]hexanes (BCHs) have been identified as the molecular replacement for benzenes. Here, we present facile access to a variety of BCHs via a stepwise two-electron formal (3 + 2) cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes (BCBs) under Lewis acid catalysis. The reaction features wide functional group tolerance for silyl enol ethers, allowing the efficient construction of two vicinal quaternary carbon centers and a silyl-protected tertiary alcohol unit in a streamlined fashion. Interestingly, the reaction with conjugated silyl dienol ethers can provide access to bicyclo[4.1.1]octanes (BCOs) equipped with silyl enol ethers that facilitate further transformation. The utilities of this methodology are demonstrated by the late-stage modification of natural products, transformations of tertiary alcohol units on bicyclo[2.1.1]hexane frameworks, and derivatization of silyl enol ethers on bicyclo[4.1.1]octanes, delivering functionalized bicycles that are traditionally inaccessible. Saturated three-dimensional carbocycles have gained increasing prominence in synthetic and medicinal chemistry. Here, the authors present facile access to a variety of bicyclo[2.1.1]hexanes via a stepwise two-electron formal (3 + 2) cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes under Lewis acid catalysis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 178529821
- Full Text :
- https://doi.org/10.1038/s41467-024-50434-6