Back to Search Start Over

Eco-evolutionary strategies for relieving carbon limitation under salt stress differ across microbial clades.

Authors :
Dong, Yang
Chen, Ruirui
Graham, Emily B.
Yu, Bingqian
Bao, Yuanyuan
Li, Xin
You, Xiangwei
Feng, Youzhi
Source :
Nature Communications; 7/17/2024, Vol. 15 Issue 1, p1-12, 12p
Publication Year :
2024

Abstract

With the continuous expansion of saline soils under climate change, understanding the eco-evolutionary tradeoff between the microbial mitigation of carbon limitation and the maintenance of functional traits in saline soils represents a significant knowledge gap in predicting future soil health and ecological function. Through shotgun metagenomic sequencing of coastal soils along a salinity gradient, we show contrasting eco-evolutionary directions of soil bacteria and archaea that manifest in changes to genome size and the functional potential of the soil microbiome. In salt environments with high carbon requirements, bacteria exhibit reduced genome sizes associated with a depletion of metabolic genes, while archaea display larger genomes and enrichment of salt-resistance, metabolic, and carbon-acquisition genes. This suggests that bacteria conserve energy through genome streamlining when facing salt stress, while archaea invest in carbon-acquisition pathways to broaden their resource usage. These findings suggest divergent directions in eco-evolutionary adaptations to soil saline stress amongst microbial clades and serve as a foundation for understanding the response of soil microbiomes to escalating climate change. From metagenomic sequencing of coastal soils along a salinity gradient, this study shows contrasting eco-evolutionary strategies for relieving carbon limitation under salt stress in bacteria and archaea. The findings suggest that bacteria conserve energy through genome streamlining when facing salt stress, while archaea invest in carbon-acquisition pathways to broaden their resource usage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
178504407
Full Text :
https://doi.org/10.1038/s41467-024-50368-z