Back to Search
Start Over
Steady motion of 80-nm-size skyrmions in a 100-nm-wide track.
- Source :
- Nature Communications; 7/4/2024, Vol. 15 Issue 1, p1-8, 8p
- Publication Year :
- 2024
-
Abstract
- The current-driven movement of magnetic skyrmions along a nanostripe is essential for the advancement and functionality of a new category of spintronic devices resembling racetracks. Despite extensive research into skyrmion dynamics, experimental verification of current-induced motion of ultra-small skyrmions within an ultrathin nanostripe is still pending. Here, we unveil the motion of individual 80 nm-size skyrmions in an FeGe track with an ultrathin width of 100 nm. The skyrmions can move steadily along the track over a broad range of current densities by using controlled pulse durations of as low as 2 ns. The potential landscape, arising from the magnetic edge twists in such a geometrically confined system, introduces skyrmion inertia and ensures efficient motion with a vanishing skyrmion Hall angle. Our results showcase the steady motion of skyrmions in an ultrathin track, offering a practical pathway for implementing skyrmion-based spintronic devices. The authors study the dynamics of 80 nm-size skyrmions in a 100 nm-wide track by electrical Lorentz transmission electron microscopy. They show that the skyrmions can be moved by nanosecond current pulse without experiencing the skyrmion Hall effect. [ABSTRACT FROM AUTHOR]
- Subjects :
- SKYRMIONS
HALL effect
TRANSMISSION electron microscopy
AUTOMOBILE racetracks
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 178460325
- Full Text :
- https://doi.org/10.1038/s41467-024-49976-6