Back to Search
Start Over
High temperature lubrication performance of chlorophenyl silicone oil.
- Source :
- Friction (2223-7704); Aug2024, Vol. 12 Issue 8, p1716-1727, 12p
- Publication Year :
- 2024
-
Abstract
- Most studies of liquid lubricants were carried out at temperatures below 200 °C. However, the service temperature of lubricants for aerospace and aeroengine has reached above 300 °C. In order to investigate the friction mechanism and provide data for high temperature lubrication, the friction and wear properties of chlorophenyl silicone oil (CPSO)-lubricated M50 steel and Si<subscript>3</subscript>N<subscript>4</subscript> friction pairs were investigated herein. Ball-on-disk experimental results show that the lubrication performance of CPSO varies significantly with temperature. Below 150 °C, coefficient of friction (COF) remains at 0.13–0.15 after the short running-in stage (600 s), while the COF in the running-in stage is 0.2–0.3. At 200 °C and above, the running-in time is much longer (1,200 s), and the initial instantaneous maximum COF can reach 0.5. Under this condition, the COF gradually decreases and finally stabilizes at around 0.16–0.17 afterwards. This phenomenon is mainly due to the different thickness of boundary adsorption film. More importantly, the wear rate of M50 steel increases significantly with the temperature, while the wear rate barely changes at temperatures above 200 °C. The anti-wear mechanism is explained as tribochemical reactions are more likely to occur between CPSO and steel surface with the increased temperature, generating the FeCl<subscript>2</subscript> protective film on the metal surface. Accordingly, FeCl<subscript>2</subscript> tribochemical film improves the lubrication and anti-wear capacity of the system. At high temperatures (200–350 °C), FeCl<subscript>2</subscript> film becomes thicker, and the contact region pressure becomes lower due to the larger wear scar size, so the wear rate growth of M50 steel is much smaller compared with that of low temperatures (22–150 °C). The main findings in this study demonstrate that CPSO lubricant has good anti-wear and lubrication capacity, which is capable of working under temperatures up to 350 °C. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 22237704
- Volume :
- 12
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Friction (2223-7704)
- Publication Type :
- Academic Journal
- Accession number :
- 178417097
- Full Text :
- https://doi.org/10.1007/s40544-023-0827-6