Back to Search
Start Over
Simulation-Based Optimization of Path Planning for Camera-Equipped UAVs That Considers the Location and Time of Construction Activities.
- Source :
- Remote Sensing; Jul2024, Vol. 16 Issue 13, p2445, 25p
- Publication Year :
- 2024
-
Abstract
- Automated progress monitoring of construction sites using cameras has been proposed in recent years. Although previous studies have tried to identify the most informative camera views according to 4D BIM to optimize installation plans, video collection using fixed or pan-tilt-zoom cameras is still limited by their inability to adapt to the dynamic construction environment. Therefore, considerable attention has been paid to using camera-equipped unmanned aerial vehicles (CE-UAVs), which provide mobility for the camera, allowing it to fit its field of view automatically to the important parts of the construction site while avoiding occlusions. However, previous studies on optimizing video collection with CE-UAV are limited to the scanning of static objects on construction sites. Given the growing interest in construction activities, the existing methods are inadequate to meet the requirements for the collection of high-quality videos. In this study, the following requirements for and constraints on collecting construction-activity videos have been identified: (1) the FOV should be optimized to cover the areas of interest with the minimum possible occlusion; (2) the path of the UAV should be optimized to allow efficient data collection on multiple construction activities over a large construction site, considering the locations of activities at specific times; and (3) the data collection should consider the requirements for CV processes. Aiming to address these requirements and constraints, a method has been proposed to perform simulation-based optimization of path planning for CE-UAVs to allow automated and effective collection of videos of construction activities based on a detailed 4D simulation that includes a micro-schedule and the corresponding workspaces. This method can identify the most informative views of the workspaces and the optimal path for data capture. A case study was developed to demonstrate the feasibility of the proposed method. [ABSTRACT FROM AUTHOR]
- Subjects :
- BUILDING sites
DRONE aircraft
ACQUISITION of data
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 16
- Issue :
- 13
- Database :
- Complementary Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 178413876
- Full Text :
- https://doi.org/10.3390/rs16132445