Back to Search Start Over

Presenting a Multispectral Image Sensor for Quantification of Total Polyphenols in Low-Temperature Stressed Tomato Seedlings Using Hyperspectral Imaging.

Authors :
Kang, Ye Seong
Ryu, Chan Seok
Kang, Jeong Gyun
Source :
Sensors (14248220); Jul2024, Vol. 24 Issue 13, p4260, 13p
Publication Year :
2024

Abstract

Hyperspectral imaging was used to predict the total polyphenol content in low-temperature stressed tomato seedlings for the development of a multispectral image sensor. The spectral data with a full width at half maximum (FWHM) of 5 nm were merged to obtain FWHMs of 10 nm, 25 nm, and 50 nm using a commercialized bandpass filter. Using the permutation importance method and regression coefficients, we developed the least absolute shrinkage and selection operator (Lasso) regression models by setting the band number to ≥11, ≤10, and ≤5 for each FWHM. The regression model using 56 bands with an FWHM of 5 nm resulted in an R<superscript>2</superscript> of 0.71, an RMSE of 3.99 mg/g, and an RE of 9.04%, whereas the model developed using the spectral data of only 5 bands with a FWHM of 25 nm (at 519.5 nm, 620.1 nm, 660.3 nm, 719.8 nm, and 980.3 nm) provided an R<superscript>2</superscript> of 0.62, an RMSE of 4.54 mg/g, and an RE of 10.3%. These results show that a multispectral image sensor can be developed to predict the total polyphenol content of tomato seedlings subjected to low-temperature stress, paving the way for energy saving and low-temperature stress damage prevention in vegetable seedling production. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
13
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178413458
Full Text :
https://doi.org/10.3390/s24134260