Back to Search Start Over

Cautious Gait during Navigational Tasks in People with Hemiparesis: An Observational Study.

Authors :
Le Roy, Albane
Dubois, Fabien
Roche, Nicolas
Brunel, Helena
Bonnyaud, Céline
Source :
Sensors (14248220); Jul2024, Vol. 24 Issue 13, p4241, 17p
Publication Year :
2024

Abstract

Locomotor and balance disorders are major limitations for subjects with hemiparesis. The Timed Up and Go (TUG) test is a complex navigational task involving oriented walking and obstacle circumvention. We hypothesized that subjects with hemiparesis adopt a cautious gait during complex locomotor tasks. The primary aim was to compare spatio-temporal gait parameters, indicators of cautious gait, between the locomotor subtasks of the TUG (Go, Turn, Return) and a Straight-line walk in people with hemiparesis. Our secondary aim was to analyze the relationships between TUG performance and balance measures, compare spatio-temporal gait parameters between fallers and non-fallers, and identify the biomechanical determinants of TUG performance. Biomechanical parameters during the TUG and Straight-line walk were analyzed using a motion capture system. A repeated measures ANOVA and two stepwise ascending multiple regressions (with performance variables and biomechanical variables) were conducted. Gait speed, step length, and % single support phase (SSP) of the 29 participants were reduced during Turn compared to Go and Return and the Straight-line walk, and step width and % double support phase were increased. TUG performance was related to several balance measures. Turn performance (R<superscript>2</superscript> = 63%) and Turn trajectory deviation followed by % SSP on the paretic side and the vertical center of mass velocity during Go (R<superscript>2</superscript> = 71%) determined TUG performance time. People with hemiparesis adopt a cautious gait during complex navigation at the expense of performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
13
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178413439
Full Text :
https://doi.org/10.3390/s24134241