Back to Search
Start Over
NUMERICAL RADIUS AND p-SCHATTEN NORM INEQUALITIES FOR POWER SERIES OF OPERATORS IN HILBERT SPACES.
- Source :
- Communications Series A1 Mathematics & Statistics; 2024, Vol. 73 Issue 2, p365-390, 26p
- Publication Year :
- 2024
-
Abstract
- Let H be a complex Hilbert space. Assume that the power series with complex coefficients f (z) := ∑<superscript>∞</superscript><subscript>k=0</subscript> a<subscript>k</subscript>z<superscript>k</superscript> is convergent on the open disk D(0, R), f<subscript>a</subscript> (z) := ∑<superscript>∞</superscript><superscript>k=0</superscript> |a<subscript>k</subscript>| z<superscript>k</superscript> that has the same radius of convergence R and A, B, C ∊ B (H) with ||A|| < R, then we have the following Schwarz type inequality ... for α ∊ [0, 1] and x, y ∊ H. Some natural applications for numerical radius and p-Schatten norm are also provided. [ABSTRACT FROM AUTHOR]
- Subjects :
- HILBERT space
SCHWARZ inequality
POWER series
RADIUS (Geometry)
Subjects
Details
- Language :
- English
- ISSN :
- 13035991
- Volume :
- 73
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Communications Series A1 Mathematics & Statistics
- Publication Type :
- Academic Journal
- Accession number :
- 178377535
- Full Text :
- https://doi.org/10.31801/cfsuasmas.1341138