Back to Search Start Over

NUMERICAL RADIUS AND p-SCHATTEN NORM INEQUALITIES FOR POWER SERIES OF OPERATORS IN HILBERT SPACES.

Authors :
DRAGOMIR, Silvestru Sever
Source :
Communications Series A1 Mathematics & Statistics; 2024, Vol. 73 Issue 2, p365-390, 26p
Publication Year :
2024

Abstract

Let H be a complex Hilbert space. Assume that the power series with complex coefficients f (z) := ∑<superscript>∞</superscript><subscript>k=0</subscript> a<subscript>k</subscript>z<superscript>k</superscript> is convergent on the open disk D(0, R), f<subscript>a</subscript> (z) := ∑<superscript>∞</superscript><superscript>k=0</superscript> |a<subscript>k</subscript>| z<superscript>k</superscript> that has the same radius of convergence R and A, B, C ∊ B (H) with ||A|| < R, then we have the following Schwarz type inequality ... for α ∊ [0, 1] and x, y ∊ H. Some natural applications for numerical radius and p-Schatten norm are also provided. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13035991
Volume :
73
Issue :
2
Database :
Complementary Index
Journal :
Communications Series A1 Mathematics & Statistics
Publication Type :
Academic Journal
Accession number :
178377535
Full Text :
https://doi.org/10.31801/cfsuasmas.1341138