Back to Search Start Over

A defect detection method for industrial aluminum sheet surface based on improved YOLOv8 algorithm.

Authors :
Luyang Wang
Gongxue Zhang
Weijun Wang
Jinyuan Chen
Xuyao Jiang
Hai Yuan
Zucheng Huang
Lei Yang
Teng Sun
Source :
Frontiers in Physics; 2024, p01-14, 14p
Publication Year :
2024

Abstract

In industrial aluminum sheet surface defect detection, false detection, missed detection, and low efficiency are prevalent challenges. Therefore, this paper introduces an improved YOLOv8 algorithm to address these issues. Specifically, the C2f-DSConv module incorporated enhances the network's feature extraction capabilities, and a small target detection layer (160 x 160) improves the recognition of small targets. Besides, the DyHead dynamic detection head augments target representation, and MPDIoU replaces the regression loss function to refine detection accuracy. The improved algorithm is named YOLOv8n-DSDM, with experimental evaluations on an industrial aluminum sheet surface defect dataset demonstrating its effectiveness. YOLOv8n-DSDM achieves an average mean average precision (mAP50%) of 94.7%, demonstrating a 3.5% improvement over the original YOLOv8n. With a single-frame detection time of 2.5 ms and a parameter count of 3.77 M, YOLOv8n-DSDM meets the realtime detection requirements for industrial applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2296424X
Database :
Complementary Index
Journal :
Frontiers in Physics
Publication Type :
Academic Journal
Accession number :
178331814
Full Text :
https://doi.org/10.3389/fphy.2024.1419998