Back to Search
Start Over
New synthesis of oligosaccharides modelling the M epitope of the Brucella O-polysaccharide.
- Source :
- Frontiers in Chemistry; 2024, p1-14, 14p
- Publication Year :
- 2024
-
Abstract
- Brucellosis is a dangerous zoonotic disease caused by bacteria of the genus Brucella. Diagnosis of brucellosis is based on the detection in animal and human sera of antibodies to the O-polysaccharide of Brucella lipopolysaccharide. The currently employed serodiagnosis of brucellosis relies on the use of the Brucella O-polysaccharide as a diagnostic antigen. However, the existence of bacterial species, which also express O-polysaccharides structurally similar to that of Brucella, may decrease the specificity of the brucellosis detection due to false-positive test results. It has been shown that the efficiency of the test can be significantly improved by using synthetic oligosaccharides that correspond to the so-called M epitope of the Brucella O-antigen. This epitope is characterized by an a-(1^3)-linkage between D-perosamine units and is unique to Brucella. Here we report on an efficient approach to the synthesis of oligosaccharides that model the M epitope of the Brucella O-polysaccharide. The approach is based on the use of the a-(1^3)-linked disaccharide thioglycoside as the key donor block. Its application allowed the straightforward assembly of a set of four protected oligosaccharides, which includes a disaccharide, two trisaccharides, and a tetrasaccharide, in five glycosylation steps. The synthesized oligosaccharides are planned to be used in the development of diagnostic tools for identifying brucellosis in humans and domestic animals, as well as a potential vaccine against it. [ABSTRACT FROM AUTHOR]
- Subjects :
- OLIGOSACCHARIDE synthesis
EPITOPES
POLYSACCHARIDES
MANNOSE
BRUCELLOSIS
Subjects
Details
- Language :
- English
- ISSN :
- 22962646
- Database :
- Complementary Index
- Journal :
- Frontiers in Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 178309155
- Full Text :
- https://doi.org/10.3389/fchem.2024.1424157