Back to Search Start Over

Water vapor permeability of polymeric packaging materials for novel glass‐free photovoltaic applications.

Authors :
Babin, Markus
Eder, Gabriele C.
Voronko, Yuliya
Oreski, Gernot
Source :
Journal of Applied Polymer Science; 8/15/2024, Vol. 141 Issue 31, p1-9, 9p
Publication Year :
2024

Abstract

Moisture ingress in photovoltaic (PV) modules is a critical factor for performance degradation, therefore, a low water vapor transmission rate (WVTR) is highly desirable for polymers used to embed the solar cells, including backsheets, frontsheets, and encapsulants. With the advent of glass‐free modules for integration in building envelopes and vehicles, there is growing interest in polymer composite structures with embedded glass fibers to enhance rigidity. Furthermore, due to environmental concerns, there is increased interest in fluorine‐free polymers for PV applications. In this work, 21 samples with different base polymers, coatings, and/or surface treatments are investigated and their WVTRs are measured. The results show no good alternatives to existing fluoride‐based polymers/coatings for reducing WVTRs of backsheets and frontsheets among the investigated samples. In addition, glass fibers embedded within polymers to provide increased stability to backsheets or in composites for lightweight PV are shown to significantly increase WVTRs, especially, when fibers are not properly embedded, providing additional diffusion pathways for moisture ingress. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218995
Volume :
141
Issue :
31
Database :
Complementary Index
Journal :
Journal of Applied Polymer Science
Publication Type :
Academic Journal
Accession number :
178297643
Full Text :
https://doi.org/10.1002/app.55733