Back to Search Start Over

High Toughness Laminated Composites Fabricated from Ti3Al(Si)C2 Filled Preceramic Paper and Nb Foils: Formation Mechanism and Influence of Laminate Architecture.

Authors :
Kashkarov, Egor Borisovich
Krotkevich, Dmitriy
Abdulmenova, Anastasia
Tolkachev, Oleg
Travitzky, Nahum
Source :
Advanced Engineering Materials; Jul2024, Vol. 26 Issue 13, p1-13, 13p
Publication Year :
2024

Abstract

In this work high strength and tough metal‐ceramic laminated composites are fabricated by spark plasma sintering (SPS) of Ti3Al(Si)C2 MAX‐phase filled preceramic papers (TAC) and ductile Nb foils. The sintering is carried out at 1250 °C and 50 MPa for 5–20 min. Various stacking techniques are used to obtain Nb/TAC laminated composites with different architectures. SPS results in the formation of reaction layer (RL) with a complex composition, which changes the thickness insignificantly with increasing sintering time. The possible formation mechanism of RL is discussed. The bending strength of Nb/TAC composites is decreased from 410 to 350 MPa when lowering the thickness of ceramic layer. The maximum fracture toughness of 10.2 MPa·m1/2 is achieved for the composite with similar individual layers thickness. The toughening is explained by complex fracture mechanisms associated with deflection and branching of cracks at interfaces, delamination, plastic deformation of Nb layers, multiple cracking and crack deflection in ceramic TAC layers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14381656
Volume :
26
Issue :
13
Database :
Complementary Index
Journal :
Advanced Engineering Materials
Publication Type :
Academic Journal
Accession number :
178297065
Full Text :
https://doi.org/10.1002/adem.202400361