Back to Search Start Over

Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia.

Authors :
Yang, Laura Hyesung
Jacob, Daniel J.
Dang, Ruijun
Oak, Yujin J.
Lin, Haipeng
Kim, Jhoon
Zhai, Shixian
Colombi, Nadia K.
Pendergrass, Drew C.
Beaudry, Ellie
Shah, Viral
Feng, Xu
Yantosca, Robert M.
Chong, Heesung
Park, Junsung
Lee, Hanlim
Lee, Won-Jin
Kim, Soontae
Kim, Eunhye
Travis, Katherine R.
Source :
Atmospheric Chemistry & Physics; 2024, Vol. 24 Issue 12, p7027-7039, 13p
Publication Year :
2024

Abstract

Nitrogen oxide radicals (NOx≡NO+NO2) emitted by fuel combustion are important precursors of ozone and particulate matter pollution, and NO 2 itself is harmful to public health. The Geostationary Environment Monitoring Spectrometer (GEMS), launched in space in 2020, now provides hourly daytime observations of NO 2 columns over East Asia. This diurnal variation offers unique information on the emission and chemistry of NOx , but it needs to be carefully interpreted. Here we investigate the drivers of the diurnal variation in NO 2 observed by GEMS during winter and summer over Beijing and Seoul. We place the GEMS observations in the context of ground-based column observations (Pandora instruments) and GEOS-Chem chemical transport model simulations. We find good agreement between the diurnal variations in NO 2 columns in GEMS, Pandora, and GEOS-Chem, and we use GEOS-Chem to interpret these variations. NOx emissions are 4 times higher in the daytime than at night, driving an accumulation of NO 2 over the course of the day, offset by losses from chemistry and transport (horizontal flux divergence). For the urban core, where the Pandora instruments are located, we find that NO 2 in winter increases throughout the day due to high daytime emissions and increasing NO2/NOx ratio from entrainment of ozone, partly balanced by loss from transport and with a negligible role of chemistry. In summer, by contrast, chemical loss combined with transport drives a minimum in the NO 2 column at 13:00–14:00 local time (LT). Segregation of the GEMS data by wind speed further demonstrates the effect of transport, with NO 2 in winter accumulating throughout the day at low winds but flat at high winds. The effect of transport can be minimized in summer by spatially averaging observations over the broader metropolitan scale, under which conditions the diurnal variation in NO 2 reflects a dynamic balance between emission and chemical loss. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807316
Volume :
24
Issue :
12
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics
Publication Type :
Academic Journal
Accession number :
178282689
Full Text :
https://doi.org/10.5194/acp-24-7027-2024