Back to Search Start Over

Insights into the role of oxygen-containing functional groups on carbon surface in water–electricity generation.

Authors :
Xue, Wan
Zhao, Zongbin
Bi, Honghui
Zhang, Bolun
Wang, Xuzhen
Qiu, Jieshan
Source :
Nano Research; Jul2024, Vol. 17 Issue 7, p6645-6653, 9p
Publication Year :
2024

Abstract

A deep understanding of the electricity generation mechanism from the interaction between water molecules and carbon material surfaces is attractive for next-generation water-based energy conversion and storage systems. Herein, an asymmetric generator was assembled based on functionalized carbon nanotubes films to investigate the relative contribution from various oxygen functional groups on carbon surface to the water-electrical performance. Experiments and calculations demonstrate that the electricity mainly originates from the water molecule adsorption by carboxyl groups and dissociation of functional groups on carbon surface, which leads to the formation of electrical double layers at interfaces. This device allows the electricity generation with a variety of water sources, such as deionized water, tap water, as well as seawater. In particular, the generator based on carboxyl carbon nanotubes can induce a voltage of over 200 mV spontaneously in natural seawater with the power density of about 0.11 mW·g<superscript>−1</superscript>. High voltages can be achieved easily through the series-connection strategy to power electronic products such as a liquid crystal display. This work reveals the dominant role of carboxyl groups in carbon-based water–electricity conversion and is expected to offer inspiration for the preparation of carbon materials with high electrical performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19980124
Volume :
17
Issue :
7
Database :
Complementary Index
Journal :
Nano Research
Publication Type :
Academic Journal
Accession number :
178276893
Full Text :
https://doi.org/10.1007/s12274-024-6578-5