Back to Search Start Over

Effect of Si Content on Microstructure and Properties of Low-Carbon Medium-Manganese Steel after Intercritical Heat Treatment.

Authors :
Hu, Zihan
Fu, Hanguang
Source :
Metals (2075-4701); Jun2024, Vol. 14 Issue 6, p675, 11p
Publication Year :
2024

Abstract

The microstructure and mechanical properties of three kinds of low-carbon medium-manganese steels with different Si contents under an intercritical heat treatment process were studied. The results show that the microstructure of the test forged steel is mainly composed of ferrite and pearlite. After 900 °C complete austenitizing quenching + 720 °C intercritical quenching, the microstructure of the test steel is mainly composed of ferrite and martensite. With the increase in Si content, the microstructure becomes finer and more uniform. The microstructure of the test steel after 900 °C complete austenitizing quenching + 720 °C intercritical quenching + 680 °C intercritical tempering is dominated by ferrite and tempered martensite, with a small amount of retained austenite and cementite. As the Si content increases, the boundaries between ferrite and tempered martensite become more clear. The tensile strength and hardness of the test steel increase with the increase in Si content, while the elongation first increases and then decreases; the comprehensive performance of the test steel is the best when the Si content is 0.685 wt. %, with a tensile strength of 726 MPa, a yield ratio of only 0.65, the highest elongation of 30.5%, and the highest strong plastic product of 22,143 MPa.%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754701
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Metals (2075-4701)
Publication Type :
Academic Journal
Accession number :
178195421
Full Text :
https://doi.org/10.3390/met14060675