Back to Search Start Over

Deciphering the Puzzle: Literature Insights on Chlamydia trachomatis -Mediated Tumorigenesis, Paving the Way for Future Research.

Authors :
Rodrigues, Rafaela
Sousa, Carlos
Vale, Nuno
Source :
Microorganisms; Jun2024, Vol. 12 Issue 6, p1126, 14p
Publication Year :
2024

Abstract

Some infectious agents have the potential to cause specific modifications in the cellular microenvironment that could be propitious to the carcinogenesis process. Currently, there are specific viruses and bacteria, such as human papillomavirus (HPV) and Helicobacter pylori, that are well established as risk factors for neoplasia. Chlamydia trachomatis (CT) infections are one of the most common bacterial sexually transmitted infections worldwide, and recent European data confirmed a continuous rise across Europe. The infection is often asymptomatic in both sexes, requiring a screening program for early detection. Notwithstanding, not all countries in Europe have it. Chlamydia trachomatis can cause chronic and persistent infections, resulting in inflammation, and there are plausible biological mechanisms that link the genital infection with tumorigenesis. Herein, we aimed to understand the epidemiological and biological plausibility of CT genital infections causing endometrial, ovarian, and cervical tumors. Also, we covered some of the best suitable in vitro techniques that could be used to study this potential association. In addition, we defend the point of view of a personalized medicine strategy to treat those patients through the discovery of some biomarkers that could allow it. This review supports the need for the development of further fundamental studies in this area, in order to investigate and establish the role of chlamydial genital infections in oncogenesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762607
Volume :
12
Issue :
6
Database :
Complementary Index
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
178192638
Full Text :
https://doi.org/10.3390/microorganisms12061126