Back to Search Start Over

An Improved Gap-Filling Method for Reconstructing Dense Time-Series Images from LANDSAT 7 SLC-Off Data.

Authors :
Li, Yue
Liu, Qiang
Chen, Shuang
Zhang, Xiaotong
Source :
Remote Sensing; Jun2024, Vol. 16 Issue 12, p2064, 27p
Publication Year :
2024

Abstract

Over recent decades, Landsat satellite data has evolved into a highly valuable resource across diverse fields. Long-term satellite data records with integrity and consistency, such as the Landsat series, provide indispensable data for many applications. However, the malfunction of the Scan Line Corrector (SLC) on the Landsat 7 satellite in 2003 resulted in stripping in subsequent images, compromising the temporal consistency and data quality of Landsat time-series data. While various methods have been proposed to improve the quality of Landsat 7 SLC-off data, existing gap-filling methods fail to enhance the temporal resolution of reconstructed images, and spatiotemporal fusion methods encounter challenges in managing large-scale datasets. Therefore, we propose a method for reconstructing dense time series from SLC-off data. This method utilizes the Neighborhood Similar Pixel Interpolator to fill in missing values and leverages the time-series information to reconstruct high-resolution images. Taking the blue band as an example, the surface reflectance verification results show that the Mean Absolute Error (MAE) and BIAS reach minimum values of 0.0069 and 0.0014, respectively, with the Correlation Coefficient (CC) and Structural Similarity Index Metric (SSIM) reaching 0.93 and 0.94. The proposed method exhibits advantages in repairing SLC-off data and reconstructing dense time-series data, enabling enhanced remote sensing applications and reliable Earth's surface reflectance data reconstruction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
12
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
178191679
Full Text :
https://doi.org/10.3390/rs16122064