Back to Search Start Over

Co-localization of the sodium-glucose co-transporter-2 channel (SGLT-2) with endothelin ETA and ETB receptors in human cardiorenal tissue.

Authors :
Williams, Thomas L.
Kuc, Rhoda E.
Paterson, Anna L.
Abraham, George R.
Pullinger, Anna L.
Maguire, Janet J.
Sinha, Sanjay
Greasley, Peter J.
Ambery, Philip
Davenport, Anthony P.
Source :
Bioscience Reports; Jun2024, Vol. 44 Issue 6, p1-11, 11p
Publication Year :
2024

Abstract

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors. Methods: Immunocytochemistry localised SGLT-2, ET<subscript>A</subscript> and ET<subscript>B</subscript> receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections. Results: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ET<subscript>A</subscript> receptors predominated in cardiomyocytes; low (compared with kidney but above background) positive staining was also detected for SGLT-2. Discussion:Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ET<subscript>A</subscript> antagonists. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01448463
Volume :
44
Issue :
6
Database :
Complementary Index
Journal :
Bioscience Reports
Publication Type :
Academic Journal
Accession number :
178171578
Full Text :
https://doi.org/10.1042/BSR20240604