Back to Search Start Over

Molecular Dynamics Analysis of Collison Cascade in Graphite: Insights from Multiple Irradiation Scenarios at Low Temperature.

Authors :
Alnairi, Marzoqa M.
Jaser Banisalman, Mosab
Source :
Crystals (2073-4352); Jun2024, Vol. 14 Issue 6, p522, 17p
Publication Year :
2024

Abstract

In our study, we utilize molecular dynamics simulations, specifically through the Reactive Empirical Bond Order, to unravel atomic-scale dynamics in graphite, an essential component in many advanced technologies, under varying irradiation scenarios. We shed light on the behavior of graphite when exposed to Primary Knock-on Atom (PKA) energies of 10, 20, 40, and 80 keV. The findings highlight the radiation vulnerability of graphite, especially when influenced by hydride inclusion. Both pristine graphite and its hydride variant exhibited an increase in Frenkel pairs (FPs) with escalating PKA energies. Notably, carbon PKAs manifested significant FP effects, whereas hydrogen PKAs influenced defect formation through variable diffusivity. In tested radiation scenarios, particularly in Mode C and the R1 region, cascade patterns identified distinct defect forms of diamond-like and elongated-diamond-like shapes, distinct from the typical PKA collision clusters. Furthermore, our cascade findings emphasize the formation of three-coordinated graphite rings, particularly as PKA energies increase. The graphite population statistics reveal a decline in threefold-coordinated atoms and an increase in other types of defects, with 7-carbon atom rings being the most common. Our research highlights the significance of understanding three-coordinated graphite rings, especially as PKA energies rise. Graphite population statistics reveal a decline in threefold-coordinated atoms and a rise in other defects. Notably, 7-carbon atom rings are the most common. From a clustering perspective, self-interstitial atom (SIA) clusters predominated in pristine graphite, while this trend balanced in the hydride variant. Our research highlights the importance of understanding atomic behaviors in graphite under several radiation scenarios. This knowledge is needed for advancing reliable and efficient technological applications, particularly in the field of nuclear technology. Our research underscores the need to understand atomic behaviors in graphite under radiation, paving the way for detailed study on reliable efficient technological applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734352
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Crystals (2073-4352)
Publication Type :
Academic Journal
Accession number :
178157805
Full Text :
https://doi.org/10.3390/cryst14060522