Back to Search Start Over

Three-Dimensional Bioprinted Skin Microrelief and Its Role in Skin Aging.

Authors :
Sun, Wenxuan
Wang, Bo
Yang, Tianhao
Yin, Ruixue
Wang, Feifei
Zhang, Hongbo
Zhang, Wenjun
Source :
Biomimetics (2313-7673); Jun2024, Vol. 9 Issue 6, p366, 13p
Publication Year :
2024

Abstract

Skin aging is a complex physiological process, in which cells and the extracellular matrix (ECM) interreact, which leads to a change in the mechanical properties of skin, which in turn affects the cell secretion and ECM deposition. The natural skin microrelief that exists from birth has rarely been taken into account when evaluating skin aging, apart from the common knowledge that microreliefs might serve as the starting point or initialize micro-wrinkles. In fact, microrelief itself also changes with aging. Does the microrelief have other, better uses? In this paper, owing to the fast-developing 3D printing technology, skin wrinkles with microrelief of different age groups were successfully manufactured using the Digital light processing (DLP) technology. The mechanical properties of skin samples with and without microrelief were tested. It was found that microrelief has a big impact on the elastic modulus of skin samples. In order to explore the role of microrelief in skin aging, the wrinkle formation was numerically analyzed. The microrelief models of different age groups were created using the modified Voronoi algorithm for the first time, which offers fast and flexible mesh formation. We found that skin microrelief plays an important role in regulating the modulus of the epidermis, which is the dominant factor in wrinkle formation. The wrinkle length and depth were also analyzed numerically for the first time, owing to the additional dimension offered by microrelief. The results showed that wrinkles are mainly caused by the modulus change of the epidermis in the aging process, and compared with the dermis, the hypodermis is irrelevant to wrinkling. Hereby, we developed a hypothesis that microrelief makes the skin adaptive to the mechanical property changes from aging by adjusting its shape and size. The native-like skin samples with microrelief might shed a light on the mechanism of wrinkling and also help with understanding the complex physiological processes associated with human skin. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23137673
Volume :
9
Issue :
6
Database :
Complementary Index
Journal :
Biomimetics (2313-7673)
Publication Type :
Academic Journal
Accession number :
178156932
Full Text :
https://doi.org/10.3390/biomimetics9060366