Back to Search Start Over

Embedding Enhancement Method for LightGCN in Recommendation Information Systems.

Authors :
Lee, Sangmin
Ahn, Junho
Kim, Namgi
Source :
Electronics (2079-9292); Jun2024, Vol. 13 Issue 12, p2282, 14p
Publication Year :
2024

Abstract

In the modern digital age, users are exposed to a vast amount of content and information, and the importance of recommendation systems is increasing accordingly. Traditional recommendation systems mainly use matrix factorization and collaborative filtering methods, but problems with scalability due to an increase in the amount of data and slow learning and inference speeds occur due to an increase in the amount of computation. To overcome these problems, this study focused on optimizing LightGCN, the basic structure of the graph-convolution-network-based recommendation system. To improve this, techniques and structures were proposed. We propose an embedding enhancement method to strengthen the robustness of embedding and a non-combination structure to overcome LightGCN's weight sum structure through this method. To verify the proposed method, we have demonstrated its effectiveness through experiments using the SELFRec library on various datasets, such as Yelp2018, MovieLens-1M, FilmTrust, and Douban-book. Mainly, significant performance improvements were observed in key indicators, such as Precision, Recall, NDCG, and Hit Ratio in Yelp2018 and Douban-book datasets. These results suggest that the proposed methods effectively improved the recommendation performance and learning efficiency of the LightGCN model, and the improvement of LightGCN, which is most widely used as a backbone network, makes an important contribution to the entire field of GCN-based recommendation systems. Therefore, in this study, we improved the learning method of the existing LightGCN and changed the weight sum structure to surpass the existing accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
12
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
178154518
Full Text :
https://doi.org/10.3390/electronics13122282