Back to Search
Start Over
Buoy‐Based Detection of Low‐Energy Cosmic‐Ray Neutrons to Monitor the Influence of Atmospheric, Geomagnetic, and Heliospheric Effects.
- Source :
- Earth & Space Science; Jun2024, Vol. 11 Issue 6, p1-22, 22p
- Publication Year :
- 2024
-
Abstract
- Cosmic radiation on Earth responds to heliospheric, geomagnetic, atmospheric, and lithospheric changes. In order to use its signal for soil hydrological monitoring, the signal of thermal and epithermal neutron detectors needs to be corrected for external influencing factors. However, theories about the neutron response to soil water, air pressure, air humidity, and incoming cosmic radiation are still under debate. To challenge these theories, we isolated the neutron response from almost any terrestrial changes by operating a bare and a moderated neutron detector in a buoy on a lake in Germany from July 15 to 02 December 2014. We found that the count rate over water has been better predicted by a theory from Köhli et al. (2021, https://doi.org/10.3389/frwa.2020.544847) compared to the traditional approach from Desilets et al. (2010, https://doi.org/10.1029/2009wr008726). We further found strong linear correlation parameters to air pressure (β = 0.0077 mb−1) and air humidity (α = 0.0054 m3/g) for epithermal neutrons, while thermal neutrons responded with α = 0.0023 m3/g. Both approaches, from Rosolem et al. (2013, https://doi.org/10.1175/jhm‐d‐12‐0120.1) and from Köhli et al. (2021, https://doi.org/10.3389/frwa.2020.544847), were similarly able to remove correlations of epithermal neutrons to air humidity. Correction for incoming radiation proved to be necessary for both thermal and epithermal neutrons, for which we tested different neutron monitor stations and correction methods. Here, the approach from Zreda et al. (2012, https://doi.org/10.5194/hess‐16‐4079‐2012) worked best with the Jungfraujoch monitor in Switzerland, while the approach from McJannet and Desilets (2023, https://doi.org/10.1029/2022wr033889) was able to adequately rescale data from more remote neutron monitors. However, no approach was able to sufficiently remove the signal from a major Forbush decrease event on 13 September, to which thermal and epithermal neutrons showed a comparatively strong response. The buoy detector experiment provided a unique data set for empirical testing of traditional and new theories on Cosmic‐Ray Neutron Sensing. It could serve as a local alternative to reference data from remote neutron monitors. Plain Language Summary: Cosmic radiation near the Earth's surface is influenced by solar activity, atmospheric conditions, and changes of nearby soil moisture or snow. To better understand how cosmic‐ray neutron measurements should be corrected for meteorological effects, we operated a detector for low‐energy neutrons in a buoy on a lake in Germany for 5 months in 2014. Since the water content in the surroundings is constant, we were able to isolate the signal from almost any ground‐related disturbances. With this instrument, we challenged traditional and recent theories on the neutron response to water, air humidity, and to reference data from high‐energy neutron monitors around the world. We found that in some cases, recent theories showed superior performance over traditional approaches. We also found a stronger response of the neutrons detected by the buoy to a major solar event than was observed by traditional neutron monitors. The concept of a neutron detector on a lake could be useful as a reference station for similar land‐side detectors and help provide more reliable soil moisture products. Key Points: Neutron detectors on a buoy were deployed in the center of a lake for 5 monthsThermal and epithermal signals correlated with air pressure, air humidity, and secondary cosmic rays from neutron monitorsData was used to challenge traditional correction approaches and to serve as an alternative neutron monitor [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23335084
- Volume :
- 11
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Earth & Space Science
- Publication Type :
- Academic Journal
- Accession number :
- 178093120
- Full Text :
- https://doi.org/10.1029/2023EA003483