Back to Search
Start Over
Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia.
- Source :
- Cell Reports; Jun2024, Vol. 43 Issue 6, pN.PAG-N.PAG, 1p
- Publication Year :
- 2024
-
Abstract
- Beliefs—attitudes toward some state of the environment—guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models, these results have implications for understanding paranoia. [Display omitted] • Lesions to the mediodorsal thalamus (MD) in monkeys heighten belief volatility • Orbitofrontal cortex (OFC) lesions impair value learning • This is a double dissociation of belief learning between brain regions • Shared computational modeling across species implicates MD in paranoia Suthaharan et al. demonstrate a causal role of the primate mediodorsal thalamus (MD) in beliefs about environmental volatility. Applying a behavioral paradigm and a computational model, they establish that belief volatility increases in paranoid people and monkeys with lesions to the MD. This suggests a role for the MD in paranoia. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 26391856
- Volume :
- 43
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Cell Reports
- Publication Type :
- Academic Journal
- Accession number :
- 178022422
- Full Text :
- https://doi.org/10.1016/j.celrep.2024.114355