Back to Search Start Over

Emergent digital bio-computation through spatial diffusion and engineered bacteria.

Authors :
Fedorec, Alex J. H.
Treloar, Neythen J.
Wen, Ke Yan
Dekker, Linda
Ong, Qing Hsuan
Jurkeviciute, Gabija
Lyu, Enbo
Rutter, Jack W.
Zhang, Kathleen J. Y.
Rosa, Luca
Zaikin, Alexey
Barnes, Chris P.
Source :
Nature Communications; 6/8/2024, Vol. 15 Issue 1, p1-11, 11p
Publication Year :
2024

Abstract

Biological computing is a promising field with potential applications in biosafety, environmental monitoring, and personalized medicine. Here we present work on the design of bacterial computers using spatial patterning to process information in the form of diffusible morphogen-like signals. We demonstrate, mathematically and experimentally, that single, modular, colonies can perform simple digital logic, and that complex functions can be built by combining multiple colonies, removing the need for further genetic engineering. We extend our experimental system to incorporate sender colonies as morphogen sources, demonstrating how one might integrate different biochemical inputs. Our approach will open up ways to perform biological computation, with applications in bioengineering, biomaterials and biosensing. Ultimately, these computational bacterial communities will help us explore information processing in natural biological systems. Biological computing is a promising field with potential applications in biosafety, environmental monitoring, and personalized medicine. Here the authors create bio-computers using engineered E. coli colonies that respond to chemical gradients, producing different logic functions depending on how they are spatially arranged. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
177993376
Full Text :
https://doi.org/10.1038/s41467-024-49264-3