Back to Search Start Over

UDT: U‐shaped deformable transformer for subarachnoid haemorrhage image segmentation.

Authors :
Xie, Wei
Jin, Lianghao
Hua, Shiqi
Sun, Hao
Sun, Bo
Tu, Zhigang
Liu, Jun
Source :
CAAI Transactions on Intelligence Technology; Jun2024, Vol. 9 Issue 3, p756-768, 13p
Publication Year :
2024

Abstract

Subarachnoid haemorrhage (SAH), mostly caused by the rupture of intracranial aneurysm, is a common disease with a high fatality rate. SAH lesions are generally diffusely distributed, showing a variety of scales with irregular edges. The complex characteristics of lesions make SAH segmentation a challenging task. To cope with these difficulties, a u‐shaped deformable transformer (UDT) is proposed for SAH segmentation. Specifically, first, a multi‐scale deformable attention (MSDA) module is exploited to model the diffuseness and scale‐variant characteristics of SAH lesions, where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi‐scale features. Second, the cross deformable attention‐based skip connection (CDASC) module is designed to model the irregular edge characteristic of SAH lesions, where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features. Third, the MSDA and CDASC modules are embedded into the backbone Res‐UNet to construct the proposed UDT. Extensive experiments are conducted on the self‐built SAH‐CT dataset and two public medical datasets (GlaS and MoNuSeg). Experimental results show that the presented UDT achieves the state‐of‐the‐art performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24682322
Volume :
9
Issue :
3
Database :
Complementary Index
Journal :
CAAI Transactions on Intelligence Technology
Publication Type :
Academic Journal
Accession number :
177945696
Full Text :
https://doi.org/10.1049/cit2.12302