Back to Search Start Over

End-to-end deep learning inference with CMSSW via ONNX using Docker.

Authors :
Chaudhari, Purva
Chaudhari, Shravan
Chudasama, Ruchi
Gleyzer, Sergei
Source :
EPJ Web of Conferences; 5/6/2024, Vol. 295, p1-9, 9p
Publication Year :
2024

Abstract

Deep learning techniques have been proven to provide excellent performance for a variety of high-energy physics applications, such as particle identification, event reconstruction and trigger operations. Recently, we developed an end-to-end deep learning approach to identify various particles using low-level detector information from high-energy collisions. These models will be incorporated in the CMS software framework (CMSSW) to enable their use for particle reconstruction or for trigger operation in real time. Incorporating these computational tools in the experimental framework presents new challenges. This paper reports an implementation of the end-to-end deep learning inference with the CMS software framework. The inference has been implemented on GPU for faster computation using ONNX. We have benchmarked the ONNX inference with GPU and CPU using NERSC's Perlmutter cluster by building a Docker image of the CMS software framework. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21016275
Volume :
295
Database :
Complementary Index
Journal :
EPJ Web of Conferences
Publication Type :
Conference
Accession number :
177902513
Full Text :
https://doi.org/10.1051/epjconf/202429509015