Back to Search
Start Over
Tumor-derived extracellular vesicles: how they mediate glioma immunosuppression.
Tumor-derived extracellular vesicles: how they mediate glioma immunosuppression.
- Source :
- Molecular Biology Reports; 1/28/2024, Vol. 51 Issue 1, p1-18, 18p
- Publication Year :
- 2024
-
Abstract
- Gliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood–brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment. In the tumor immune microenvironment (TIME), the primary immune cells are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). In particular, glioma-associated TAMs are chiefly composed of monocyte-derived macrophages and brain-resident microglia. These cells partially exhibit characteristics of a pro-tumorigenic, anti-inflammatory M2-type. Glioma-derived EVs can hijack TAMs to differentiate into tumor-supporting phenotypes or directly affect the maturation of peripheral blood monocytes (PBMCs) and promote the activation of MDSCs. In addition, EVs impair the ability of dendritic cells (DCs) to process antigens, subsequently hindering the activation of lymphocytes. EVs also impact the proliferation, differentiation, and activation of lymphocytes. This is primarily evident in the overall reduction of CD4 + helper T cells and CD8 + T cells, coupled with a relative increase in Tregs, which possess immunosuppressive characteristics. This study investigates thoroughly how tumor-derived EVs impair the function of immune cells and enhance immunosuppression in gliomas, shedding light on their potential implications for immunotherapy strategies in glioma treatment. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03014851
- Volume :
- 51
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Molecular Biology Reports
- Publication Type :
- Academic Journal
- Accession number :
- 177878392
- Full Text :
- https://doi.org/10.1007/s11033-023-09196-5