Back to Search Start Over

Proto-Adapter: Efficient Training-Free CLIP-Adapter for Few-Shot Image Classification.

Authors :
Kato, Naoki
Nota, Yoshiki
Aoki, Yoshimitsu
Source :
Sensors (14248220); Jun2024, Vol. 24 Issue 11, p3624, 11p
Publication Year :
2024

Abstract

Large vision-language models, such as Contrastive Vision-Language Pre-training (CLIP), pre-trained on large-scale image–text datasets, have demonstrated robust zero-shot transfer capabilities across various downstream tasks. To further enhance the few-shot recognition performance of CLIP, Tip-Adapter augments the CLIP model with an adapter that incorporates a key-value cache model constructed from the few-shot training set. This approach enables training-free adaptation and has shown significant improvements in few-shot recognition, especially with additional fine-tuning. However, the size of the adapter increases in proportion to the number of training samples, making it difficult to deploy in practical applications. In this paper, we propose a novel CLIP adaptation method, named Proto-Adapter, which employs a single-layer adapter of constant size regardless of the amount of training data and even outperforms Tip-Adapter. Proto-Adapter constructs the adapter's weights based on prototype representations for each class. By aggregating the features of the training samples, it successfully reduces the size of the adapter without compromising performance. Moreover, the performance of the model can be further enhanced by fine-tuning the adapter's weights using a distance margin penalty, which imposes additional inter-class discrepancy to the output logits. We posit that this training scheme allows us to obtain a model with a discriminative decision boundary even when trained with a limited amount of data. We demonstrate the effectiveness of the proposed method through extensive experiments of few-shot classification on diverse datasets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
11
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
177860275
Full Text :
https://doi.org/10.3390/s24113624