Back to Search Start Over

Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling.

Authors :
Fang, Yuanding
Liu, Youxing
Huang, Haojie
Sun, Jianzhe
Hong, Jiaxing
Zhang, Fan
Wei, Xiaofang
Gao, Wenqiang
Shao, Mingchao
Guo, Yunlong
Tang, Qingxin
Liu, Yunqi
Source :
Nature Communications; 6/7/2024, Vol. 15 Issue 1, p1-9, 9p
Publication Year :
2024

Abstract

Developing highly active materials that efficiently utilize solar spectra is crucial for photocatalysis, but still remains a challenge. Here, we report a new donor-acceptor (D-A) covalent organic framework (COF) with a wide absorption range from 200 nm to 900 nm (ultraviolet-visible-near infrared light). We find that the thiophene functional group is accurately introduced into the electron acceptor units of TpDPP-Py (TpDPP: 5,5'-(2,5-bis(2-ethylhexyl)−3,6-dioxo-2,3,5,6-tetrahydropyrrolo [3,4-c]pyrrole-1,4-diyl)bis(thiophene-2-carbaldehyde), Py: 1,3,6,8-tetrakis(4-aminophenyl)pyrene) COFs not only significantly extends its spectral absorption capacity but also endows them with two-photon and three-photon absorption effects, greatly enhancing the utilization rate of sunlight. The selective coupling of benzylamine as the target reactant is used to assess the photocatalytic activity of TpDPP-Py COFs, showing high photocatalytic conversion of 99% and selectivity of 98% in 20 min. Additionally, the TpDPP-Py COFs also exhibit the universality of photocatalytic selective coupling of other imine derivatives with ~100% conversion efficiency. Overall, this work brings a significant strategy for developing COFs with a wide absorption range to enhance photocatalytic activity. Creating highly active materials that effectively harness solar spectra is essential for photocatalysis, though challenging. Here the authors introduce a novel donor-acceptor covalent organic framework with a broad absorption range of 200 nm to 900 nm, achieving efficient artificial photocatalytic amine coupling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
177742194
Full Text :
https://doi.org/10.1038/s41467-024-49036-z