Back to Search
Start Over
Single-channel seizure detection with clinical confirmation of seizure locations using CHB-MIT dataset.
- Source :
- Frontiers in Neurology; 2024, p01-13, 13p
- Publication Year :
- 2024
-
Abstract
- Introduction: Long-term electroencephalography (EEG) monitoring is advised to patients with refractory epilepsy who have a failure of anti-seizure medication and therapy. However, its real-life application is limited mainly due to the use of multiple EEG channels. We proposed a patient-specific deep learningbased single-channel seizure detection approach using the long-term scalp EEG recordings of the Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) dataset, in conjunction with neurologists' confirmation of spatial seizure characteristics of individual patients. Methods: We constructed 18-, 4-, and single-channel seizure detectors for 13 patients. Neurologists selected a specific channel among four channels, two close to the behind-the-ear and two at the forehead for each patient, after reviewing the patient's distinctive seizure locations with seizure re-annotation. Results: Our multi- and single-channel detectors achieved an average sensitivity of 97.05-100%, false alarm rate of 0.22-0.40/h, and latency of 2.1-3.4 s for identification of seizures in continuous EEG recordings. The results demonstrated that seizure detection performance of our single-channel approach was comparable to that of our multi-channel ones. Discussion: We suggest that our single-channel approach in conjunction with clinical designation of the most prominent seizure locations has a high potential for wearable seizure detection on long-term EEG recordings for patients with refractory epilepsy. [ABSTRACT FROM AUTHOR]
- Subjects :
- SEIZURES (Medicine)
CHILDREN'S hospitals
ANTICONVULSANTS
PEOPLE with epilepsy
Subjects
Details
- Language :
- English
- ISSN :
- 16642295
- Database :
- Complementary Index
- Journal :
- Frontiers in Neurology
- Publication Type :
- Academic Journal
- Accession number :
- 177719041
- Full Text :
- https://doi.org/10.3389/fneur.2024.1389731