Back to Search
Start Over
Ramsey Numbers of Trees Versus Multiple Copies of Books.
- Source :
- Acta Mathematicae Applicatae Sinica; Jul2024, Vol. 40 Issue 3, p600-612, 13p
- Publication Year :
- 2024
-
Abstract
- Given two graphs G and H, the Ramsey number R(G,H) is the minimum integer N such that any two-coloring of the edges of K<subscript>N</subscript> in red or blue yields a red G or a blue H. Let v(G) be the number of vertices of G and χ(G) be the chromatic number of G. Let s(G) denote the chromatic surplus of G, the number of vertices in a minimum color class among all proper χ(G)-colorings of G. Burr showed that R (G , H) ≥ (v (G) − 1) (χ (H) − 1) + s (H) if G is connected and v (G) ≥ s (H) . A connected graph G is H-good if R (G , H) = (v (G) − 1) (χ (H) − 1) + s (H) . Let tH denote the disjoint union of t copies of graph H, and let G ∨ H denote the join of G and H. Denote a complete graph on n vertices by K<subscript>n</subscript>, and a tree on n vertices by T<subscript>n</subscript>. Denote a book with n pages by B<subscript>n</subscript>, i.e., the join K 2 ∨ K n ¯ . Erdős, Faudree, Rousseau and Schelp proved that T<subscript>n</subscript> is B<subscript>m</subscript>-good if n ≥ 3 m − 3 . In this paper, we obtain the exact Ramsey number of T<subscript>n</subscript> versus 2B<subscript>2</subscript>- Our result implies that T<subscript>n</subscript> is 2B<subscript>2</subscript>-good if n ≥ 5. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01689673
- Volume :
- 40
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Acta Mathematicae Applicatae Sinica
- Publication Type :
- Academic Journal
- Accession number :
- 177714209
- Full Text :
- https://doi.org/10.1007/s10255-024-1117-4