Back to Search Start Over

Ramsey Numbers of Trees Versus Multiple Copies of Books.

Authors :
Guo, Xiao-bing
Hu, Si-nan
Peng, Yue-jian
Source :
Acta Mathematicae Applicatae Sinica; Jul2024, Vol. 40 Issue 3, p600-612, 13p
Publication Year :
2024

Abstract

Given two graphs G and H, the Ramsey number R(G,H) is the minimum integer N such that any two-coloring of the edges of K<subscript>N</subscript> in red or blue yields a red G or a blue H. Let v(G) be the number of vertices of G and χ(G) be the chromatic number of G. Let s(G) denote the chromatic surplus of G, the number of vertices in a minimum color class among all proper χ(G)-colorings of G. Burr showed that R (G , H) ≥ (v (G) − 1) (χ (H) − 1) + s (H) if G is connected and v (G) ≥ s (H) . A connected graph G is H-good if R (G , H) = (v (G) − 1) (χ (H) − 1) + s (H) . Let tH denote the disjoint union of t copies of graph H, and let G ∨ H denote the join of G and H. Denote a complete graph on n vertices by K<subscript>n</subscript>, and a tree on n vertices by T<subscript>n</subscript>. Denote a book with n pages by B<subscript>n</subscript>, i.e., the join K 2 ∨ K n ¯ . Erdős, Faudree, Rousseau and Schelp proved that T<subscript>n</subscript> is B<subscript>m</subscript>-good if n ≥ 3 m − 3 . In this paper, we obtain the exact Ramsey number of T<subscript>n</subscript> versus 2B<subscript>2</subscript>- Our result implies that T<subscript>n</subscript> is 2B<subscript>2</subscript>-good if n ≥ 5. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01689673
Volume :
40
Issue :
3
Database :
Complementary Index
Journal :
Acta Mathematicae Applicatae Sinica
Publication Type :
Academic Journal
Accession number :
177714209
Full Text :
https://doi.org/10.1007/s10255-024-1117-4