Back to Search
Start Over
Vertex-degree function index for concave functions of graphs with a given clique number.
- Source :
- Journal of Applied Mathematics & Computing; Jun2024, Vol. 70 Issue 3, p2197-2208, 12p
- Publication Year :
- 2024
-
Abstract
- For any connected graph G = (V , E) and any function f on the positive integers set Z + , vertex-degree function index H f (G) is defined as the sum of f (d G (v)) over v ∈ V , where d G (v) is the degree of v in G. For any n , k ∈ Z + with n ≥ k , connected graphs with n vertices and clique number k form the set W n , k . In this paper, for any strictly concave and increasing function f on Z + , we determine the maximal and minimal values of H f (G) over G ∈ W n , k , and characterize the corresponding graphs G ∈ W n , k with the extremal values. We also get the maximum vertex-degree function index H f (G) , where f(x) is a strictly concave and decreasing function for x ≥ 1 . [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15985865
- Volume :
- 70
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Journal of Applied Mathematics & Computing
- Publication Type :
- Academic Journal
- Accession number :
- 177597326
- Full Text :
- https://doi.org/10.1007/s12190-024-02043-1