Back to Search Start Over

Vertex-degree function index for concave functions of graphs with a given clique number.

Authors :
Yang, Jiaxiang
Liu, Hechao
Wang, Yixiang
Source :
Journal of Applied Mathematics & Computing; Jun2024, Vol. 70 Issue 3, p2197-2208, 12p
Publication Year :
2024

Abstract

For any connected graph G = (V , E) and any function f on the positive integers set Z + , vertex-degree function index H f (G) is defined as the sum of f (d G (v)) over v ∈ V , where d G (v) is the degree of v in G. For any n , k ∈ Z + with n ≥ k , connected graphs with n vertices and clique number k form the set W n , k . In this paper, for any strictly concave and increasing function f on Z + , we determine the maximal and minimal values of H f (G) over G ∈ W n , k , and characterize the corresponding graphs G ∈ W n , k with the extremal values. We also get the maximum vertex-degree function index H f (G) , where f(x) is a strictly concave and decreasing function for x ≥ 1 . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15985865
Volume :
70
Issue :
3
Database :
Complementary Index
Journal :
Journal of Applied Mathematics & Computing
Publication Type :
Academic Journal
Accession number :
177597326
Full Text :
https://doi.org/10.1007/s12190-024-02043-1