Back to Search
Start Over
Identification and characterization of a nonbiological small-molecular mimic of a Zika virus conformational neutralizing epitope.
- Source :
- Proceedings of the National Academy of Sciences of the United States of America; 5/21/2024, Vol. 121 Issue 21, p1-10, 33p
- Publication Year :
- 2024
-
Abstract
- Antigenic similarities between Zika virus (ZIKV) and other flaviviruses pose challenges to the development of virus-specific diagnostic tools and effective vaccines. Starting with a DNA-encoded one-bead-one-compound combinatorial library of 508,032 synthetic, non-natural oligomers, we selected and characterized small molecules that mimic ZIKV epitopes. High-throughput fluorescence-activated cell sorter-based bead screening was used to select molecules that bound IgG from ZIKV-immune but not from dengue-immune sera. Deep sequencing of the DNA from the "Zika-only" beads identified 40 candidate molecular structures. A lead candidate small molecule "CZV1-1" was selected that correctly identifies serum specimens from Zika-experienced patients with good sensitivity and specificity (85.3% and 98.4%, respectively). Binding competition studies of purified anti-CZV1-1 IgG against known ZIKV-specific monoclonal antibodies (mAbs) showed that CZV1-1 mimics a nonlinear, neutralizing conformational epitope in the domain III of the ZIKV envelope. Purified anti-CZV1-1 IgG neutralized infection of ZIKV in cell cultures with potencies comparable to highly specific ZIKV-neutralizing mAbs. This study demonstrates an innovative approach for identification of synthetic non-natural molecular mimics of conformational virus epitopes. Such molecular mimics may have value in the development of accurate diagnostic assays for Zika, as well as for other viruses. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00278424
- Volume :
- 121
- Issue :
- 21
- Database :
- Complementary Index
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 177590427
- Full Text :
- https://doi.org/10.1073/pnas.2312755121